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Abstract

Quantifying root growth over time is challenging. Here we consider models of
root growth that can be calibrated using data from a novel root sensing device called
RootTracker, which non-destructively detects roots over time using impedance sensing.
The resulting models capture spatial and temporal patterns in root growth and can be
used to recapitulate realistic looking root trajectories.

1 Introduction

Herein we consider modeling root trajectories; in particular the task of inferring a crown root
trajectory as well as the underlying parameters governing its path, knowing only the root’s
origin and a single point along its trajectory. This problem is inspired by data produced by
a novel root sensing device called RootTracker.

Since the data available about a crown root’s trajectory are limited, the complexity of
the models we can consider are limited as well. Ultimately, we reduce crown root growth
to two parts: 1) the angle at which the root is growing relative the the soil surface with no
lateral movement allowed, and 2) the distance the root travels before changing the direction
in which it is traveling.

Our purpose of modeling root growth is twofold. First, we want to quantify differences in
root growth, specifically differences in the depth of root growth by variety or time. Second,
we want to produce visualizations that recapitulate typical root growth.

2 Background

Roots are used to acquire nutrients and water as well as to anchor a plant. Within a species,
genetic diversity can lead to a wide range of root morphologies. The substrate in which roots
grow also has an impact on morphology as roots actively seek out water and nutrients. These
morphological differences can, in turn, convey an advantage or disadvantage to, e.g. drought
stress, flooding stress, nutrient stress, etc. Within a commercial context, stress reduces
yield and hence developing or finding varieties that are more resilient, including through
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(a) (b)

Figure 1: (a) Root systems of young wheat (monocot) and lupin (dicot) plants, left and right
respectively. The wheat roots on the periphery are early nodal roots. Successive groups,
called whorls, of nodal or crown roots grow above one another as the root system fills out.
In contrast, lupin has a taproot which forms an axis along which lateral roots emerge. (b)
Example root system architecture of a monocot, like maize. Crown roots emerge in successive
groups called whorls, one on top of another. Eventually, these whorls form brace roots which
emerge from the plant above ground. Lateral roots are roots that branch off of earlier formed
roots. Reproduced from Plants in Action, http://plantsinaction.science.uq.edu.au,
published by the Australian Society of Plant Scientists.

the genetic control of their root system, is of major importance. Thus, understanding root
systems’ structure and function is not only an important scientific endeavor but one with
major implications for goods we consume on a daily basis.

2.1 Monocotyledon root systems

We are interested in modeling maize root systems or root systems that are similar to maize,
like wheat or rice, that have a fibrous root system whose major elements, called crown
roots or nodal roots, originate from a region near the soil surface and, roughly speaking,
grow out and down. In contrast, crops like soybean or cotton are distinguished by having a
taproot that forms the axis off of which other major elements grow. In either case, smaller
lateral roots can branch off of a parent root. These two groups are classified respectively as
monocotyledons or “monocots” and dicotyledons or “dicots” in reference to the number of
embryonic leaves in a seed. Figure 1 provides an example of monocot and dicot root systems
and a cartoon of monocot root system architecture (RSA). Herein we are most interested in
(monocot) crown root and lateral root growth.

Hochholdinger [2009] is a common reference for an overview of maize RSA, but the book
chapter is not freely available. To make it easier for readers to find sources, we focus on
sources that are openly available as of this writing. For those looking for a basic introduction
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to roots, Munns et al. [2018, ch. 4] is a undergraduate level overview. Nielsen [2020] provides
a similarly leveled, brief description of early root growth in maize. Pages [2011] provides
a very brief, but more technical, general overview of RSA. The review by Hodge et al.
[2009] covers the regulators of RSA, its genetic components, different morphologies, as well
as factors, like stressors, that influence root growth. References in the next section also
generally contain some description of RSA.

2.2 Root phenotyping

Our data comes from a device called RootTracker, discussed in greater detail below, which
uses impedance sensing to detect root growth [Aguilar et al., 2021]. Typical laboratory
experiments involve gel imaging, i.e. growing roots in agar, or x-ray images [Mairhofer
et al., 2013, Rogers et al., 2016]. However, these methods are not feasible in the field or
when using substrates like soil or potting mix. Alternative phenotyping techniques for such
substrates are shovelomics, soil cores, and minirhizotrons. Takahashi and Pradal [2021] and
Paez-Garcia et al. [2015] provide an overview of root phenotyping techniques, along with
further details of root system architecture and its relevance. We provide a description of
phenotyping techniques similar to RootTracker which are used to measure aspects of the
root crown and root growth at relatively shallow depths, e.g. less than 30cm in depth.

Shovelomics involves excavating a hemisphere of roots, cleaning and imaging the sample,
and then extracting root characteristics with software [Trachsel et al., 2011, York and Lynch,
2015, Das et al., 2015, Liu et al., 2021]. (A brief overview can be found on the Jonathan
Lynch’s website.) A major disadvantage of shovelomics is that it is destructive. Soil coring,
which involves taking a soil core and then measuring the amount of organic matter [Böhm,
2012, Prior and Rogers, 1992], is also destructive.

A minirhizotron is essentially a camera in a clear tube that is buried in the soil [Johnson
et al., 2001, Maeght et al., 2013]. Like shovelomics, minirhizotrons capture images that must
be processed to extract root characteristics. Minirhizotrons introduce some confounding,
since roots respond to impediments. The installation process is also problematic, since one
must auger a hole to create space for the instrument.

Figure 2: A graphic of RootTracker

RootTracker tries to overcome some of these chal-
lenges by non-destructively monitoring root growth
with an array of sensors that are spaced in a cylindri-
cal symmetry around a plant’s root system. Figure
2 shows the appearance of RootTracker. The green
“paddles” are printed circuit board (PCB). Along the
outer edge of each paddle is a column of 22 electrodes.
The centers of adjacent electrodes are about a half
centimeter (cm) apart and have a range of 0.5 to 16.7
cm in depth. There are a total of 12 paddles, which
are equally spaced at angles of 30 degrees.

RootTracker monitors voltages at each electrode
that are passed through a detection algorithm to iden-
tify when a root passes close to a sensor. The algo-

rithm also creates quality control metrics to assess when it is receiving valid signals. Noise
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is introduced in at least two ways. First, it is possible to get false positive detections, as
soil may shift near a sensor for reasons other than a root passing nearby. Second, roots may
grow between paddles without growing near enough to sensors to trigger a detection. For
the sake of tractability, we will assume that the false positive rate is low, and we will not try
to distinguish between types of detections.

RootTracker can detect both crown roots and lateral roots, which are roots that branch
off of crown roots. For the sake of developing a tractable model below, we will assume that
all roots detected are crown roots, since as of this writing our detection algorithm does not
distinguish between the types of roots detected. While the spatio-temporal pattern of the
root detection may impart some information as to the type of root, introducing a hidden
state characterizing the root type seriously complicates the task at hand. We leave that
problem for later work.

2.3 Root models

There has been much work developing simulations of root growth, which is to say models
that can realistically replicate root growth in silico [Lynch et al., 1997, Dupuy et al., 2010,
Postma et al., 2017, Schäfer et al., 2022, Schnepf et al., 2018, Holzworth et al., 2014]. Such
models contrast with statistical models of inference, whose purpose is to make inferences
given limited data. While one could take a model designed for simulation and restrict its
output to observed data to identify likely model parameters, this approach will carry a high
computational cost, if it is even possible. (There are a few attempts along these lines using
approximate Bayesian computation [Morandage et al., 2021]).

In contrast to the simulation-centric approaches, we start with the goal of inference and
then try to find a minimal model that supports inferring model parameters and capturing
important elements of root growth. To do this we reduce root growth to two elements: 1)
the direction in which the root tip is growing and 2) the distance the root travels before
changing direction. Under this setup, the we can capture and recapitulate gravitropism, one
of the most prominent and longest recognized features of root growth [Rich and Watt, 2013].
Further, we can estimate the model parameters using observations of only a single point
along a root trajectory.

3 Data

3.1 Methods

Data for this experiment was collected in a greenhouse at Alamance Community College,
in Alamance County, NC. The aim was to compare early root growth for different species
of plants. The treatments were maize, wheat, soybean, cotton, tomato, and a control (an
empty pot). The fieldbook refers to maize as “corn” so we will use the terms maize and corn
interchangeably. Five gallon pots were filled with soil. A RootTracker device was placed into
the soil and then a seed was placed in the soil at the center of the RootTracker (see Figure
2). For a single treatment, 12 pots were arranged in a 4x3 grid on a bench to form what is
akin to one replicate — though we do not pool data from that group into a single phenotype.
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The locations of those replicates was placed in a randomized complete block design with 2
reps per treatment for a total of 24 RootTrackers per species. All pots were hand watered
at the same time. RootTracker data was collected for 4 weeks.

3.2 RootTracker data structure

The most obvious representation of the data is the triplet of time, paddle, and depth at
which a root is detected. Unfortunately, we also have to account for missing data, which can
occur when quality control metrics are poor.

To that end, for a given device, we will consider the trajectory of matrices of root de-
tections, Bh ∈ {0, 1}22×12, h = 0, . . . ,Ω, where h is indexed in hours and the response is an
indicator if there was a detection or not at a given electrode-paddle combination within the
hour. If, at any sensor, the quality control metric is poor for more than 10 minutes of an hour,
then we assume the whole matrix of detections is missing — let mh ∈ {0, 1}, t = 1, . . . ,Ω
indicate if at time h there is missing data.

We simplify this initial data further on the grounds that roots grow relatively slowly,
hence we can still capture the most interesting root dynamics by aggregating to the daily
level. Further, for data exploration and visualization purposes, it can be helpful to aggregate
over adjacent electrodes as well. For the sake of generality, let ω be the period in hours, e.g.
24, over which to aggregate, let ν be the number of electrodes over which to aggregate, and let
Ht = {h : bh/ωc = t}, t = 0, . . . , Tω := bH/ωc and Sk = {i : bi/νc = k}, k = 0, . . . , b22/νc.
Then we can define the aggregated number of detections as

Atkj = max
h∈Ht, i∈Sk

Bhij,

so that At ∈ {0, 1}b22/νc×12 is an indicator of if there was a detection on a given electrode-
paddle combination. We use the max, instead of the sum, since when there are multiple
detections at similar locations and times the detections are likely from the same root. This
is usually not an issue and we only have a single detection within a space-time group, in
which case the sum and the max yield the same aggregate value.

We can also aggregate the amount of non-missing data by letting

ut =
∑
h∈Ht

(1−mh).

It will be beneficial to partition our data into three parts: the number of detections
in a day, the electrode (or depth) of detection, and the paddle on (or angle in cylindrical
coordinates at) which the detection occurs. Let

ct =
∑
kj

Atkj

be the number of detections within the day. Then let

Ft = {(k, j, t) : Atkj = 1}
be the collection of electrode group-paddle-days where there are detections. We will conflate
the set Ft as a matrix Ft of dimension ct×3. We include the day so that we can stack the Ft to
get a further matrix capturing the depth and angle information over time F = (F1, · · · , FT ).
We will model the number of root detected separately from where the detections occur.
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3.3 Data exploration

We want to get a handle on what root growth looks like for this experiment — where does
it occur and how does root growth change over time. To begin, we bin time and depth on
a coarse grid and then compute average rates of root growth. In this case, average “rate“
refers to the number of roots detected per unit of time (of non-missing data) and electrode
area, averaged over all devices within a group.

Figure 3: Heatmap showing the rates of root growth by depth and time for both corn and
wheat.

Figure 3 shows the resulting rates of root growth by time and depth. For both corn
and wheat, one sees greater rates at shallower depths initially, which then move lower over
time. In contrast, for soybean and cotton, which have taproots (i.e. dicots not monocots),
we see a different pattern of root growth in which there is a spike of growth in days 8-12
or 12-16, but little subsequent root growth. We will not dwell on these differences, since
we are concerned with modeling monocot crown root growth, but they do show that the
RootTracker is successfully distinguishing between species.

Restricting our attention to corn, we can plot the rates of root growth as a function of
depth stratified by time, as seen in Figure 4. (We have flipped the axes to provide a visual
sense of the distribution of root growth across depths.) The distributions are unimodal with
the mode moving deeper over time.

We can refine these results using more sophisticated smoothing techniques. Figure 5
shows the typical rate of root growth by depth and time when we assume that the rate
comes from a Gaussian process. Again, we see early root growth at shallower depths, which
then moves deeper over time.
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Figure 4: Rates of corn root growth as a function of depth and stratified by time group.
The axes have been flipped so that depth has a more intuitive, vertical interpretation. These
plots are analogous to unnormalized distributions of root growth by depth over time.

Figure 5: Rates of root growth fitted by a Gaussian process whose covariates are depth
and time. We use the isotropic Euclidean distance (exponential squared distance kernel)
for simplicity. The plot on the left corresponds to hyperparameters that are fit via cross
validation. The plot on the right has hyperparameters that impose more smoothing.

4 Model

4.1 Model of root growth

We will consider growth in a vertical plane, to eliminate questions about growth side to
side. In this simplified model, the root tip determines the direction of root growth, and the
root grows linearly in that direction for a length (or time), before acquiring a new direction.

7



Thus, we can characterize root growth by a sequence of directions and lengths that piece
together to recapitulate its trajectory.

In particular, let θi ∈ (−π/2, π/2) represent the angle (with respect to the horizontal)
on piece i, and ∆`i be the length traveled for that piece. In terms of changes in the xy-
coordinates of the root, we have

(∆xi,∆yi) = ∆`i(cos θi, sin θi).

Figure 6: A root trajectory. Under
our model setup, the root travels in
a piecewise linear fashion. The move-
ment of each piece, (∆xi,∆yi) is de-
termined by the slope mi or angle
θi and distance traveld at each step
i = 1, 2, 3.

While this parameterization makes sense in terms
of our physical model of root growth, it will be con-
venient to construct a framework that accommodates
our data. In particular, our data is such that we ob-
serve the depth of a root at a predetermined width
(or radius). Thus, it will be helpful to derive a single
expression for the observable depth.

To derive an expression for the observable depth
a root reaches, we will employ ∆xi and the changes
in slope ∆mi so that the slope on piece i is mi =∑i

j=1 ∆mi and ∆yi = mi∆xi. In this case,

(∆xi,∆yi) = ∆xi(1,mi).

Note, as a matter of modeling our root growth, we can
now consider modeling the distributions of ∆xi > 0
and ∆mi, instead of θi and ∆`i. Connecting these
quantities via our expression for ∆xi and ∆yi, we have
that

mi = tan(θi),

∆xi = ∆`i cos θi,

and

∆mi =
i∑

j=1

(−1)j+i tan θj.

Let us assume that the root will take on K changes before continuing indefinitely in the
direction of the (K + 1)th piece. For ∆xi, > 0, i = 1, . . . , K, the x-coordinate of the root
at step i is xi =

∑i
j=1 ∆xj, the change in depth is ∆yi = mi∆xi, and the y-coordinate is

yi =
∑i

j=1 ∆yj. By convention we will say that (x0, y0) = 0, so that (xi, yi)
n
i=0 define a

piecewise linear path from the origin, which we can then extend outwards with slope mK+1

indefinitely.
To find the value of y, given a certain horizontal coordinate x = r, we can interpolate.

There are K + 1 possible cases:

1. xi−1 < r ≤ xi: the root goes past (or up to) r on its ith step, i = 1, . . . , K;
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2. xK < r: the root goes past r after its Kth step — assuming the root travels indefinitely
from that point on at a slope of mK+1.

For the kth case, the value of y(r) will be

y = yk−1 + (r − xk−1)mk. (1)

We can modify (1) to find that

y =
[ k−1∑
i=1

mi∆xi

]
+ (r − xk−1)mk =

k−1∑
i=1

k−1∑
j=1

∆mj∆xiI{j ≤ i}+ (r −
k−1∑
i=1

∆xi)
k∑
j=1

∆mj

=
k−1∑
j=1

∆mj

[
r − xj−1 +

k−1∑
i=j

(
∆xi −∆xi

)]
+ (r − xk−1)∆mk

=
k∑
j=1

∆mj(r − xj−1)

Thus, regardless of the specific case, we can write

y =
K+1∑
j=1

∆mj(r − xj−1)+. (2)

The expression
λ(∆x)j = (r − xj−1)+, j = 1, . . . , K + 1, (3)

comes up often, so we define it here. Now we can succinctly say, for instance, that y = λ′∆m,
where λ is implicitly evaluated at ∆x.

Alternatively, if we want to find an inner product in terms of the slopes, we can construct

δ(∆x)j =

{
∆xj, xj < r

(r − xj−1)+, xj ≥ r,
j = 1, . . . , K + 1 (4)

so that y = δ′m where δ is implicitly evaluated at ∆x.

4.2 Log depths

Because we are modeling depths, which are always below zero, we may also want to consider
the same model above on the log scale, like log(−y). However, now we also need to consider
where the root starts. Previously, we have assumed the root starts at zero, but this does not
make sense from the standpoint of the log transform, since that corresponds to −∞. Thus,
it makes more sense to consider the origin of the root to be slightly below zero at y0. In
that case, to apply the same model as above, but on a log-like scale we would consider the
transformed response ỹ = log(−y) − log(−y0). We can invert this transform via y0 exp(ỹ),
or if ỹ0 = log(−y0), then − exp(ỹ + ỹ0).

If we consider the paths to be straight lines on the log scale, then they will be curved
when returning to the original scale.
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5 Identifiability

We will need to restrict the model above in order to have efficient Markov Chain Monte
Carlo (MCMC) sampling. If we do not, then we run into issues of identifiability and flat
regions in the posterior.

To provide a brief sketch of the issue, before we explore it more fully, let us approximate
the trajectory of a root. To that end, suppose that neither ∆xi, i = 1, . . . K nor ∆mi, i =
1, . . . , n = K + 1 varies much and ∆xi ' µdx = r/(K + 1) and ∆mi ' µdm. Then, using the
fact that xn ' nµdx, we find that the depth of the root at xn is:

yn '
n∑
i=1

µdx(iµdm) ' 1

2
x2n
µdm
µdx

.

Hence, the curvature of the root trajectory is determined by the ratio µdm/µdx and is invariant
along these level sets. Even if we change the number of kinks along the root prior to r this
relationship holds at r, so that the quantify of interest is the ratio, not either mean parameter
individually. This phenomenon can also be seen with numerical experiments, even when we
allow ∆xi and ∆mi to vary, as seen in the next section.

5.1 Parameter exploration

For the sake of our numerical experiments, we need to place data generating distributions
on ∆xi and ∆mi, which are easier to work with than θi and ∆`i.

In particular, we will assume that ∆xi, i = 1, . . . , K and ∆mi, i = 1, . . . , K + 1 are
independent and (truncated) Gaussian:

∆xi ∼ N(0,r)(µx, σ
2
x), i = 1, . . . , K,

and
∆mi ∼ N(µm, σ

2
m), i = 1, . . . , K + 1.

Here we enforce having at least one kink in a root by insisting that ∆xi ∈ (0, r). Letting ∆mi

have some chance of taking on positive values allows the root to turn shallower at times.
Figure 7 shows how the parameter valus impact the mean and standard distribution of

the depth. For both the mean and the standard deviation, one finds that there are level sets
within the parameter space that leave the mean or standard deviation nearly invariant. In
other words, one can arrive at similar looking distributions for different parameter values.
Thus, the posterior will not concentrate around a single point, but rather along a surface,
which makes posterior computations more difficult [Betancourt, 2016].

5.2 Non-identifiability

The numerical experiments above, suggest that our posterior can have flat regions. Here we
show, specifically, how that comes about. For this section, we will drop the assumption that
∆x is truncated, which simplifies the argument. If we assume that ∆x is sufficiently unlikely
to be below zero or above r, then the same argument holds, approximately, in the truncated
case.
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Figure 7: Left: a heatmap of the mean depth by µdx and µdm, stratified by σdx and σdm.
There are level sets along a roughly linear, inverse relationship between µdx and µdm and
this holds across the various standard deviations. Thus, in terms of the mean, µdx and µdm
are not well identified. Right: a heatmap of the standard deviation by σdx and σdm stratified
by µdx and µdm. The strongest changes are due to σdm. As it increases, the variation in the
depth distribution markedly increases. On a secondary basis, µdx impacts the variability of
the distribution, with more variation occurring when µdx is smaller, and hence there are more
kinks in the root. Thus, one can trade some σdm for µdx and keep the standard deviation of
the distribution similar. Given, the interplay of µdx, µdm, and σdm, it is possible to arrive at
similar looking distributions for different parameter values.

Let us factor the distribution for depth as

p(y|∆x, φ)︸ ︷︷ ︸
term 1

p(∆x|µdx, σdx)︸ ︷︷ ︸
term 2

p(φ)︸︷︷︸
prior

.

For term 1, from (2) and (3), we have

y = ∆m′λ(∆x).

Hence
(y|∆x, φ) ∼ N(µdmλ

′1, σ2
dmλ

′λ).

For two different points, ∆x(1) and ∆x(2), and two different parameter sets, (µ
(1)
dm, σ

(1)
dm) and

(µ
(2)
dm, σ

(2)
dm), the probability densities are identical if their respective parameters satisfy

µ
(1)
dm λ(∆x(1))′1 = µ

(2)
dm λ(∆x(2))′1

and
σ
(1)
dm ‖λ(∆x(1))‖ = σ

(2)
dm ‖λ(∆x(2))‖.

For term 2, fix σdx to any value. The respectively likelihoods for ∆x(1) and ∆x(2) are
then identical when

‖(∆x(1) − 1µ
(1)
dx )‖ = ‖(∆x(2) − 1µ

(2)
dx )‖.
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Completing the square for the respective parameters, we see that the level set is a hyperbola
defined by (

µ
(1)
dx −∆x

(1)
)2
−
(
µ
(2)
dx −∆x

(2)
)2

= var(∆x(2))− var(∆x(1))

where the overline denotes the empirical mean and var denotes the empirical variation across
the K entries of the vector.

For an arbitrary pair of points, we have constructed levels sets in the parameters space
for the product of terms 1 and 2. Thus, if the prior term is uninformative, the corresponding
posterior will not concentrate around a single point in the parameter space, but rather have
high probability on a surface within the parameter space.

5.3 Further constraints needed

The implication of all of this is that we cannot learn µdx, µdm, σdx, and σdm by only observing
the depth the root reaches at radius r. This might be possible, if we had some additional
information, regarding, for instance ∆x, but we do not.

This is in principle acceptable. The posterior distribution, instead of concentrating
around a point, will concentrate on a surface. If we were to think about simulating root
trajectories from the posterior predictive distribution, we would get trajectories that might
be different in the sense that they have differing numbers of kinks prior to being detected,
but they would all result in similar distributions of root detections by depth at a given
radius. The problem is that having an entire surface of likely parameter values slows the
convergence of our HMC sampler and leads to poor convergence diagnostics.

To get around this problem, we will simply fix ∆xi at a constant value. In other words,
we will make a very strong assumption about how often the root tip changes direction. Keep
in mind, our primary goal is to recapitulate plausible root growth. To that end, the exact
distance the root travels before making a change in direction is not critical, even though it
would be nice not to have to make such a strong assumption.

6 Root trajectory process

Now that we have accepted that we need to fix ∆xi (or ∆`i), we can try to find a reasonable
choice for the distribution of ∆mi, i = 1, . . . , K + 1. There are several competing desires
when trying to find a good data generating process for ∆m. We want to

• recapitulate the distribution of root growth by depth;

• prevent unrealistic root growth, i.e. prevent roots from growing above the ground or
too steeply; and

• produce realistic looking root trajectories.

Bounding the growth of roots is somewhat problematic. While we can only measure root
detections to a certain depth (at a certain radius) that is not to say that there are no roots
growing below that point. Conversely, the radius at which roots are detected is not that
great, so perhaps it is reasonable to assume that there is little root growth below the deepest
sensor. Truncating a sum of random variables is challenging since this is not necessarily
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easily encoded in Stan, our software of choice for posterior inference [Stan Development
Team, 2023].

We consider several options for modeling ∆mi or θi, i = 1, . . . , K + 1. The details for
these models can be found in Appendix A.

M08 (Normal, truncated) For all roots, each ∆mi, i = 1, . . . K + 1 is independent and
identically normally distributed with the restriction that ` < ∆m′λ < u where l is a
lower bound and u is an upper bound to root growth at radius r.

M09 (Correlated normal, truncated) For a given root, ∆mi, i = 1, . . . K + 1 is independent
and identically normally distributed, but the mean of that distribution is randomly
generated for each root. The subsequent observed root depth is restricted so that
` < ∆m′λ < u as above.

M10 (Skew normal) For all roots, each ∆mi, i = 1, . . . K + 1 is independent and identically
skew normally distributed.

M14 (Normal, truncated on the log scale) Like the normal, truncated model, but modeling
log depths.

M21 (Normal on a log-odds scale) We use a sigmoid transform s so that θi = s(zi) where
zi = z0 +

∑i
j=1 ∆zi and ∆zi are independent and identically distributed over all roots.

As you can see by the model numbers, we have tried many models and different pa-
rameterizations for each. For instance, the skew-normal model has much better MCMC
convergence properties when parameterized as mean, standard deviation, and shape, rather
than a location, scale, shape parameterization. We keep the original model number to match
our Git repository code [Windle, 2023].

6.1 Performance

To compare the models we broke the observed root data into four epochs by time. For
each model and epoch, we computed the mean absolute error (MAE) between the posterior
predictive distribution and the empirical probability — the posterior predictive distribution
was discretized using the depth bins used to describe the electrode locations and any weight
outside of those bins was discarded. To create a single numeric summary, we computed the
mean MAE (MMAE) over epochs. Figure 8 shows the probability mass functions for corn.
We had tried to compare the models by Bayes factors using bridge sampling [Gelman and
Meng, 1998, Gronau et al., 2017], but seemingly due to the high number of latent variables,
the computation could not complete in a timely manner for some comparisons. We also
inspected the trajectories to see if roots traveled to unrealistic values, i.e. above ground, and
if they could pass for real root trajectories.

M08, M14, and M21 have similar MMAE performance, followed by M10. M09 had
variable performance. Though M10 had slightly worse performance that M08, M14, and
M21, the lack of truncation forced the parameters to fit the mode of the empirical distribution
well, which is a critical element to capture. Further, its root trajectories look reasonable.
Thus, for the purposes of both matching the empirical distribution and producing compelling
root trajectories, M21 and M10 seem to be the best choices. The numeric metrics across the
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Figure 8: The empirical distribution of depth along with the discretized posterior predictive
distributions of depth for each model. The top panels correspond the posterior predictive
distribution when no unrealistic paths are removed. The bottom panels correspond to when
unrealistic paths are removed. Removal of unrealistic paths can have and adverse impact. For
instance, for the first epoch [0, 10], M08 and M09 have much lower probability at shallower
depths after the removal of unrealistic paths. For each model the x-step size is 2, which
corresponds to 3 “kinks” before reaching the radius r = 8, hence the “3k” suffix for each
model in the legend.

models for corn and wheat can be found in Appendix B, Table 1. A more detailed summary
is as follows.

M08 M08 had good performance, but it has root trajectories that often go above zero. Re-
moving those trajectories in the posterior predictive computation degraded the MMAE
and qualitatively shifted the look of the posterior predictive depths when the depth
distribution favored shallow roots. Another downside is that when simulating from the
posterior predictive distribution without a lower bound, roots could travel very deep.
The MCMC sampler was relatively quick with good performance diagnostics.

M09 More correlation in ∆mi had the intended effect of reducing the number of unrealistic
paths. When the the parameter γ as described A.2 was set to 0.5, the performance was
fair. However, M09 had poor performance when γ was high. Further, this seems to
coincide with worse MCMC performance.

M10 M10 had fair performance. Because there was no truncation imposed here, fitting the
model makes the implicit assumption that root growth drops off completely outside
of the sensor range. As a consequence, the model tends to underestimate the amount
of root growth at the edges of the paddle. However, an advantage of this is that the
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model overshoots at the peaks of the empirical distribution, leading to a more decisive
appearance in terms of where the roots are growing. Unlike M08 and M09 you cannot
easily marginalize out the K + 1 latent variables.

M14 M14 had good performance. The results are like M08 with one exception. While one
need not worry about unrealistic root growth above ground by modeling on the log
scale, it does lead to what look like unrealistic root trajectories. Further, the problem
of excessively deep root growth when removing the lower truncation, as seen in M08, is
exacerbated.

M21 M21 had good performance. M21 tended to do a better job recapitulating the dis-
tribution of root growth when that root growth was concentrated at depth compared
to M08 and M09. The trajectories look reasonable, though they can concentrate as a
straight line of root growth owing to the sigmoid transformation. The model is more
complicated than M08, M09, or M10 and the MCMC convergence is worse than M08
or M10.

7 Modeling root emergence

We know that crown roots emerge periodically in groups called whorls. One could consider
a mixture model whose components represent whorls, but we avoid that approach for the
following reason. While our focus is on crown roots, RootTracker detects roots from both
crown roots and lateral roots, which are roots that branch off of crown roots. Thus, it may
be unreasonable to assume that our detections will possess a very strong periodic pattern
as suggested by a whorl model. That being said, if the lateral roots that are detected are
relatively close to the crown root from which they emerge, it is still reasonable to use those
detections to represent crown root paths — it is just that the timing of the detection will
be perturbed. However, we still do want to leave open the possibility of capturing temporal
patterns if they exist. For these reasons, we model the root growth using a Gaussian process
with a periodic kernel. We adopt the following model.

From our description of the data structure in Section 3.2, for each device i, i = 1, . . . , D,
we aggregate A

(i)
t to the daily level and then assume that the number of detections within

day t for device i, which corresponds to the nth observation, is binomially distributed with
probability pn and trial size 2un:

cn ∼ Binom(pn, 2un).

The factor of 2 comes from the assumption that there we do not expect to have more than
2 detections within an hour period. When we have no missing data un = 24 so that the
maximum trial size is 48. We model pn on the log-odds scale zn so that

zn = log
( pn

1− pn

)
and for a single group, i.e. species, zn follows the model

zn = µ+ ft(n) + εn, εn ∼ N(0, σ2
obs)
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where t(n) is the time, in days, of the nth observation and f ∈ RT comes from a mean zero
Gaussian process whose covariance function is

K(s, t) = σ2
K exp

[
−

2 sin2
(
π |s−t|

τ

)
`2

]
+ σ2

Nδs(t).

Our prior choices are summarized in the following table.

Param Prior
σobs N[0,∞)(0, 1)
µ N(−3, 1.52)
σK N[0,∞)(0, 1)
` InvGamma(5, 5)
τ Unif[7, 21]
σN N[10−4.5,∞)(0, 1)

The prior on µ was chosen based on our assumption that we are unlikely to observe more
than two roots per day, and we strongly expect the probability of a root emerging to be less
than 0.5 when the trial size is 48.

The posterior distribution of f and p is summarized in Figure 9 and discussed further
therein. The posterior was generated using Stan with 3 chains that each ran for 7000
iterations with 4000 warmup iterations, leading to 9000 total samples. Of the underlying
parameters (excluding the latent variables), σobs had the lowest effective sample size of just
over 500, with the second lowest being σN at about 2100. The Stan program was run with
the default parameters, except for adapt delta, which we set to 0.99 to avoid divergent
transitions that had a tendency to occur at lower settings.

8 Dynamic model parameters

Instead of breaking the root data into epochs and fitting each epoch separately, as we did in
Section 6.1, we would like to make the model parameters dynamic and allow them to change
smoothly in time. A common way to do this is to assume that the dynamic parameters
come from a Gaussian process. Any of the models we have considered can accommodate
this approach.

As an example, we introduce dynamic parameters to M10, which models the changes in
slope as a skew normal distribution. The parameters of the skew normal innovations, as
described in Section A.3 are µ, σ, and α or some transformed version thereof, e.g. µ̃. Let
us consider the mean parameter µ̃ — we will drop the tilde for notational convenience. In
Section 6.1 we effectively modeled that as

µt = µ
(0)
j , for t is in epoch Ej

µ
(0)
j ∼ N(d, (d/2)2), j = 1, . . . , 4.

To allow this parameter to change on a daily basis we can modify the above to

(µt)
T
t=1 ∼ N(µ(0)1, σ2K)

µ(0) ∼ N(d, (d/2)2)
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Figure 9: Left: posterior summary of mean count levels; right posterior distribution of the
period parameter. The mean count level refers to the mean of the binomial distribution from
which the counts are sampled and is equal to the the probability of “success” ×48. There are
two quantities plotted, both transformed from the log-odds scale back to the binomial mean
scale: the posterior median and interquartile range of µ + ft and the interquartile range of
µ + ft + ε, t = 1, . . . , T where the residual ε is taken in a predictive sense, i.e. for a new
plant and not one for which we have data. The empirical daily mean is plotted in red. The
period is concentrated around 15 days.

17



where

K(s, t) = σ2
K exp

[
−
(s− t

`

)2]
, s, t = 1, . . . , T.

Similar accommodations can be made for σ and α. This leads us to:

M23 M10 with dynamic mean, standard deviation, and shape parameters that change
smoothly in time (days).

We have implemented M23 in Stan using priors similar the model of counts described
perviously and used for our other models, e.g M10. Details can be found in the Git repo
[Windle, 2023].

For the purposes of fitting the model let t be time in days, ct denote the number of
detections on day t, dit denote the ith detection depth on day t, and ait denote the angle of
the ith detection on day t. Assume the density takes the form

T∏
t=1

[ ct∏
i=1

p(dit|θd, t)p(ait|θa, t)
]
p(ct|θc, t)p(θd)p(θa)p(θc)

where θd are the parameters related to depth, θa are the parameters related to the angle,
and θc is the parameter related to the number of detections recorded. This structure lets us
fit the time component, the depth component, and the angle component separately. Since
our focus in this paper is modeling root trajectories and the distribution of detections by
depth, we have simply assumed ait comes from a uniform distribution. (In future work, we
can explore how to take advantage of this information.)

Figure 10: M23 parameters over time for corn and wheat.

Figure 10 shows the posterior distribution of the model parameters in time for corn and
wheat. The mean, which has been transformed to reflect the mean observed depth, changes
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noticeably in time for corn. This reflects what we observed in Figures 3 and 5 where the
distribution appears to move deeper in time. We also see the shape of the distribution
changing, which makes sense as the distribution moves from left skewed to right skewed over
the interval of interest. We see a similar movement downward for wheat, but only from day
13 to 28. This is not totally surprising since there is very little wheat root growth initially,
as seen in Figures 3 and 13. Under the model above, when there is little information about
the distribution by depth, as is the case when there are few root detections, then a dynamic
parameter will revert to the global average. We might be able to overcome this problem by
introducing a trend into the model.

Figure 11:

To get a sense of what the root trajectories look like we simulate from the posterior
predictive distribution and plot them in Figure 11. A few modifications were made to clean
up the images. We excluded unrealistic trajectories, which is justified since we know that
this has little impact on the subsequent distribution by Table 1. We also halved the number
of trials in the binomial distribution from 48 to 24. As noted previously, the RootTracker
device can detect both crown roots and lateral roots. We have assumed that all detections
are crown roots to this point. However, it is likely some of these detections are lateral roots
that grew off of a nearby crown root. Reducing the number of trials reduces the number of
crown roots generated, reflecting the previous point, and making the images more clear in
the process.

Examining the root trajectories in Figure 11, we can see similar features as suggested by
Figures 10, 9, and 13. Corn tends to produced more root detections, except perhaps at the
very end of the trial, and it seems to have deeper root distributions later in the experiment.
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9 Conclusion

Herein we have considered a parsimonious model of monocot root growth. The models we
considered were necessarily simple, since the data we have to fit these models is limited —
we only observe one point along the trajectory of each root. Despite this simplicity, we were
able to adequately capture the distribution of roots by depth while also producing plausible
root trajectories.

There are many further avenues to explore, including the following.

• Fixed length of root growth. Herein we took advantage of a fixed horizontal step size
when modeling root trajectories. That has the advantage of computational simplicity,
but the disadvantage of being less realistic than perhaps having a fixed piecewise length
of root growth. As shown in Section 4, we can accomodate this change, though it may
adversely impact the sampling efficiency.

• Missing data. In some of our models, we have not acknowledged that there is missing
data. And in other models where we have, simulations from the non-truncated distri-
butions is not realistic. It would be preferable for the models to both reflect that there
is missing data while also generating realistic posterior predictive distributions.

• Model both crown roots and lateral roots. Herein, we modeled all roots as crown roots.
However, we know RootTracker also detects lateral roots. Given strong assumptions
about when whorls of crown roots emerge and the likelihood of having detections in
similar regions of space and time, it might be possible to infer what type of root is
being detected.

• Angle of detection. We focused on recapitulating distributions by depth, but we have
not conducted a detailed analysis of the angle of detection, which could be useful for
flagging lateral roots.

• Capturing plant-to-plant variation or other partitions of variation. For the sake of
simplicity, we have assumed that all e.g. corn plants in this experiment come from the
same distribution (in a given epoch or on a given day). In agricultural experiments
it is common to stratify by rep, location, or other factors, which would correspond to
introducing a hierarchy for the model parameters. The results from M23 suggests that
this is possible.

Code for replicating our results can be found at this paper’s companion Git repository
[Windle, 2023].
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A Root trajectory models

The depth of observed root growth is

y = ∆m′λ

where λ is defined in (3). We are interested in choices of distribution for ∆m. We can also
express the depth as

y = m′δ

where δ is as in (4), which is more useful when modeling changes in the angle directly, since
m = tan θ.

A.1 Normal, truncated model

Assume that ∆mj ∼ N(µ, σ2), j = 1, . . . , K + 1 are iid. We can marginalize this so that

y ∼ N(µa, σ2b2)

where
a = λ′1 and b = ‖λ‖.

By reparameterizing to µ̃ = µa and σ̃ = σb we can retrieve a model that is independent of
the choice of λ, i.e.

y ∼ N(µ̃, σ̃2).
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This is useful, because we can place a prior on µ̃ and σ̃ directly. Note that we can also
impose the restriction that y ∈ [`, u].

Let’s go a step further, so that we can recover ∆m, if we want. Let Q be an orthonormal
matrix whose first column is proportional to λ and w = bQ′∆m. Note y = w1 and has the
same distribution as stated above. Because of the independence the components of w, when
we truncate w1 to [`, u], we do not lose the Gaussian shape for the other components and
the posterior of w2:K+1 is independent of w1 given µ and σ. Thus, for a given λ, and hence
a and b, to recover µ, σ, and ∆m, we can do µ = µ̃/a, σ = σ̃/b, w1 = y,

w2:K+1 ∼ N
(
µ̃
b

a
Q′2:K+11, σ̃

2IK

)
,

and ∆m = Qw/b.
As suggested above, we want to place a prior distribution on µ̃ and σ̃, since these do

not depend on λ. Because of the truncation, it is not necessarily the case that we want
to limit µ̃, so it is preferable to chose relatively uninformative priors. For instance, letting
d = (`+ u)/2, we could do

µ̃ ∼ N(d, (d/2)2)

σ̃ ∼ N[0,∞](0, d
2).

A.2 Correlated normal, truncated model

The problem with the model above is that while it accommodates truncation of the observed
depths, it does not take into account unrealistic trajectories, e.g. paths that go above the
surface of the soil. The problem is that introducing these constraints into the model leads to
a multivariate truncated normal distribution whose truncation is a convex space for which
we cannot compute a normalizing constant. In other words, it messes up our ability to make
inferences on µ and σ. However, for the purposes of generating realistic paths, we can expand
the model to try and avoid such paths.

We can alter the normal, truncated model to avoid unlikely paths by introducing a
hierarchy, which induces correlation in the trajectories of ∆mj. In particular, introducing
notation for both root and piece:

∆mij ∼ N(zi, σ
2
2), j = 1, . . . , K + 1

zi ∼ N(µ, σ2
1)

for root i.
Let us ignore the issue of truncation for the moment. In terms of estimating the under-

lying parameters, it is a similar story as above, albeit with too many degrees of freedom. If
we marginalize the zi, then we have

∆mij ∼ N(µ1,11′σ2
1 + Iσ2

2).

Using a reparameterization like above we have

yi ∼ N(µ̃, σ̃2)

24



where now µ̃ = aµ and
σ̃2 = a2σ2

1 + b2σ2
2.

The latter makes it evident that we cannot learn both σ1 and σ2 in the non-truncated case
and that we must chose their relative importances, which we can do by e.g. choosing γ for

γ =
a2σ2

1

a2σ2
1 + b2σ2

2

.

By choosing a larger σ1 relative to σ2, we introduce more correlation within the path of the
trajectory. In other words, roots that start shallow will stay shallow and roots that start
steep will stay steep. In the limiting case, we have a random start with a deterministic
path. Within the context of truncation, the truncation would eliminate all paths that are
too shallow, which are precisely the paths we are worried about — the ones that might go
above the level of the soil.

However, we have to be careful about where we introduce truncation. The problem is
that we cannot just truncate λ′∆m for the distribution of ∆m after marginalizing zi, since
that has a correlation structure that doesn’t fit well with the transformation w = bQ′∆m.
But, we can do something similar to above.

Just as above, we did not integrate out the mean parameters and we must avoid doing
the same here. Following the same transformation w = bQ′∆m as previously and letting
z̃i = azi, we have

wi ∼ N(z̃i
b

a
Q′1, b2σ2

2I)

z̃i ∼ N(µ̃, a2σ2
1).

Given a choice of γ, we can rewrite this as

wi ∼ N
(
z̃i
b

a
Q′1, (1− γ)σ̃2I

)
z̃i ∼ N(µ̃, γσ̃2).

Conditional on z̃i, we can truncate the first component of w and still write down a likelihood.
Thus we learn about µ̃ and σ̃ through y = w1, which has the distribution (and being explicitly
about the conditioning)

(yi|z̃i, µ̃, σ̃) ∼ N[`,u](z̃i, (1− γ)σ̃2),

which does not care about λ, a, or b! And then the other components of w follow

(wi,2:K1 |z̃i, µ̃, σ̃) ∼ N
(
z̃i
b

a
Q′2:K+11, (1− γ)σ̃2IK

)
.

Thus, after all is said and done, for the purposes of inference, we have

yi ∼ N[`,u](z̃i, (1− γ)σ̃2)

z̃i ∼ N(µ̃, γσ̃2).

This makes it clear that we cannot just marginalize out z̃i. The only external dependence
that remains is the choice of γ. If we lose the truncation, then we can marginalize z̃i, in
which case it becomes clear that γ is free, which is a bit of a warning that this parameter
may not be easy to learn. We at least know it must reside in [0, 1]. As before, the connection
between y and µ̃ and σ̃, suggest place priors on those parameters similar to above.
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A.3 Skew normal

This is perhaps the most straightforward of all the models. A skew normal distribution is
typically parameterized by location, shape, and scale (as it is in Stan). However, as explained
by Pewsey [2000], there can be advantages to using the mean, standard deviation, and shape
as the parameterization and that is what we found to be the case.

The skew normal density is

2φ(x|ξ, ω)Φ
(
α
x− ξ
ω

)
where φ is a normal kernel with location ξ and scale ω, Φ is a standard normal cumulative
distribution function, and α is the shape parameter. It is also common to replace the shape
with

δ =
α√

1 + α2
.

The mean and variance are related to ξ, ω, δ by

µ = ξ +

√
2

π
ωδ and σ2 = ω2

(
1− 2

π
δ2
)
.

Further, the skewness (defined as E[(X − µ)3/σ3]) is

γ =
4− π

2

( 2
π
δ2

1− 2
π
δ2

)3
.

We model the changing slopes as iid

∆mi ∼ SN(µ, σ, α), i = 1, . . . K + 1,

where SN refers to skew normal, µ and σ are the mean and standard deviation, not the
location and scale, and α is the shape.

We would prefer to have priors that do not depend on K, the number of kinks before r,
too much. To that end we use a non-informative Gaussian prior on α, like α ∼ N(0, 52) and
we modify µ and σ as in M08 so that

µ̃ = ‖λ‖1 µ and σ̃ = ‖λ‖2 σ

We then place priors on µ̃ and σ̃ like

µ̃ ∼ N(d, (d/2)2)

σ̃ ∼ N[0,∞)(0, d
2).

Aside: It is possible to write down the exact density of a sum of skew normal distributions
[Nadarajah and Li, 2017]. However, this is not implemented by default in Stan nor is it a
trivial expression.

A.4 Normal, truncated on the log scale

This model is almost identical to M08, but instead of modeling the depth, we model the log
depth log(−y)− log(1) = log(−y) with the bounds adjusted accordingly.
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A.5 Modeling angle, not slope

Now we consider modeling changes in angle directly, and not the slope. We use a shifted
and scaled sigmoid transform s, where s has range [0, 1] and is symmetric about (0, 1/2), so
that

θ = s(ξ;u, `) = (u− `)s(ξ) + `.

The parameters u and ` have the effect of controlling the maximum and minimum angle so
that θ ∈ [`, u]. For each root, the random slopes are generated by

mi = tan(θi), i = 1, . . . , K + 1

θi = s(ξi;u, `) i = 1, . . . , K + 1

ξi = ξ0 +
i∑

j=1

∆ξi i = 1, . . . , K + 1

∆ξi ∼ N(µ, σ), i = 1, . . . K + 1.

One of the advantages of M08 is that we defined its prior in terms of the observed depths.
This is helpful since the number of kinks in the root before r can change, and we would like
to have priors that are insensitive to that choice. To that end, we want to try to relate the
parameters we have specified for ∆xi in a way that connects them to the distribution of
depths. Let C be the matrix whose ith row sums the first i elements of the vector to which
it is applied. We have

ξ̃ = C∆ξ ∼ N(µC1, σ2CC ′).

The function f(ξ) = tan(s(ξ; `, u)) will itself be sigmoidal when ` > −π/2 and u < π/2 —
it is a composition of increasing functions and has limits in both directions. Assume for the
moment that we have an approximation to f that takes the form β0 + β1x. Since y = m′δ
using (4), we thus have

y ' δ′[β01 + β1(ξ01 + ξ̃)]

= β0(δ
′1) + β1ξ0(δ

′1) + β1δ
′ξ̃.

Note that
β1δ

′ξ̃ ∼ N(β1µδ
′C1, σ2β2

1‖Cδ‖2).

We can simplify all of this by observing that δ′1 = r and C ′δ = rev x̃ where

x̃i =

{
xi, xi < r

r, xi ≥ r,
i = 1, . . . , K + 1.

Hence y is approximately distributed as

N
(
rβ0 + rβ1ξ0 + β1‖x̃‖1µ, σ2β2

1‖x̃‖22
)
.

The transformed parameters of interest are then

µ̃ = rβ0 + rβ1ξ0 + β1‖x̃‖1µ
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and
σ̃ = σβ1‖x̃‖2.

Before we get to the priors on µ̃ and σ̃, we need some further definitions.
To add some further flexibility to the model, we allow u, `, and ξ0 to be free as well, but

with fairly strong priors. We will describe the priors on these quantities, and then get to the
priors for µ̃ and σ̃. The prior set up for the bounds and for the starting point are

ξ0 = ρ(u− `) + `

ρ ∼ [0.7, 0.95]

` ∼ [m`,m` + wu]

u ∼ [mu − wu,mw]

In other words, the lower and upper bounds can vary a little from some minimum and
maximum values and the starting point ξ0 is randomly chosen so that it is near the top of
the sigmoid curve. Of course, we can adjust those bounds so that instead of 70-95% up the
curve we are 90-95% up the curve, or whatever seems reasonable. The important thing is
that we want to move down the curve to angles that imply a steeper root growth.

To induce a prior on µ and σ, we consider the linear approximation to the sigmoid curve.
In particular, we will use a secant line, which we hope is an approximation of the line of best
fit over the ξ values that we expect to encounter.

Let θs and θe represent typical starting and ending angles and define ξi = s−1(θi; `, u),
i = e, s. The secant line is β0 + β1ξ where

β1 =
tan(θs)− tan(θe)

ξs − ξe
and

β0 = tan(θe)− β1ξe.
Note that

ξi = s−1
(θi − `
u− `

)
, i = e, s.

Thus, if we specify not the angle, but the fraction of the angle, e.g. ρi = θi−`
u−` , then

ξi = s−1(ρi), i = e, s.

and
θi = `+ (u− `)ρi = ρiu+ (1− ρi)`, i = e, s.

Hence, if the fraction of the angle is fixed and used to determine the secant line, then ξe
and ξs will be fixed as well and we just need to compute θe and θs to get β1 and β0. The
one remaining point is what u and ` to use. We could choose mu and m`, if we want the
secant line to be independent of u and ` or we could chose to use the random values u and
` themselves.

Hence, we can place priors on µ̃ and σ̃ as before, like µ̃ ∼ N(d, (d/2)2) and σ̃ ∼ N(0, d2),
and then retrive an implied prior on µ and σ, conditional on ξ0 and perhaps u and ` via the
secant line approximation.
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B Model Performance

Table 1 show the performance of the models for corn and wheat. Brief descriptions of the
models and model names can be found in Section 6. More detailed descriptions are in
Appendix A. The suffix of 1k, 2k, or, 3k indicates if the model was fit with 1, 2, or 3 kinks
before the detection radius. The kinks were assumed to be equally spaced, which corresponds
to a fixed µdx value of r/(k + 1), k = 1, 2, 3. Each model was fit for corn and wheat in four
different epochs: 1) [0, 10] days, (10, 18] days, (18, 22] days, and (22, 28] days. Posterior
predictive distributions were generated for each and those posteriors were binned according
to the depth levels of the electrodes. Data outside of those bins was excluded when compute
the metrics. For each epoch, we computed the mean absolute error and the Kullback-Liebler
divergence between the posterior predictive probability mass function versus the empirical
mass function. Averages of those values are in the table below as “mmae” and “mkl”. The
column “thresh“ refers to a threshold used to discard root sample paths. When the threshold
was∞ no roots trajectories were discarded. When it was 0, root trajectories that went above
ground were discarded. You can see below that throwing away trajectories can adversely
affect the fit for some models, especially M08 for corn.

C Additional figures

Figure 12: The posterior predictive probability mass functions for wheat, along with the
empirical distribution as well.
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Corn
model thresh mmae mkl
empirical Inf 0.000 0.000
m08 1k Inf 0.169 0.023
m08 2k Inf 0.172 0.023
m08 3k Inf 0.173 0.024
m09 1k Inf 0.222 0.043
m09 2k Inf 0.214 0.042
m09 3k Inf 0.218 0.043
m10 1k Inf 0.226 0.042
m10 2k Inf 0.229 0.043
m10 3k Inf 0.246 0.047
m14 1k Inf 0.169 0.024
m14 2k Inf 0.171 0.025
m14 3k Inf 0.167 0.023
m21 1k Inf 0.187 0.026
m21 2k Inf 0.184 0.030
m21 3k Inf 0.177 0.029
m08 1k 0.000 0.183 0.026
m08 2k 0.000 0.209 0.035
m08 3k 0.000 0.220 0.039
m09 1k 0.000 0.196 0.032
m09 2k 0.000 0.206 0.033
m09 3k 0.000 0.225 0.037
m10 1k 0.000 0.239 0.053
m10 2k 0.000 0.250 0.059
m10 3k 0.000 0.278 0.071

Wheat
model thresh mmae mkl
empirical Inf 0.000 0.000
m08 1k Inf 0.286 0.057
m08 2k Inf 0.293 0.059
m08 3k Inf 0.292 0.059
m09 1k Inf 0.327 0.076
m09 2k Inf 0.330 0.075
m09 3k Inf 0.326 0.075
m10 1k Inf 0.323 0.081
m10 2k Inf 0.330 0.085
m10 3k Inf 0.326 0.085
m14 1k Inf 0.272 0.050
m14 2k Inf 0.272 0.048
m14 3k Inf 0.263 0.046
m21 1k Inf 0.333 0.079
m21 2k Inf 0.328 0.084
m21 3k Inf 0.330 0.084
m08 1k 0.000 0.281 0.061
m08 2k 0.000 0.300 0.071
m08 3k 0.000 0.309 0.075
m09 1k 0.000 0.328 0.082
m09 2k 0.000 0.345 0.090
m09 3k 0.000 0.359 0.097
m10 1k 0.000 0.329 0.083
m10 2k 0.000 0.350 0.095
m10 3k 0.000 0.361 0.106

Table 1: Model performance for corn and wheat. The performance is measured by discretiz-
ing the posterior predictive distribution and then comparing it to the empirical distribution.
“mmae” refers to the mean mean absolute error across four epochs while “mkl” refers to
the mean Kullback-Liebler divergence across the epochs. The column “thresh” refers to a
threshold used to discard root trajectories. If a root trajectory goes above a threshold, then
it is removed in the subsequent distribution. For instance, M08 in corn is adversely affected
when trajectories go above ground. The results for M09 are for when the parameter γ = 0.5
as defined in A.2.
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Figure 13: The posterior distribution for the mean number of roots expected day day for
wheat. Unlike corn, estimating the periodicity of wheat emergence is more difficult. Pooling
the data and using a common periodicity parameter could improve the estimation.
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